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Maximal work problem in finite-time thermodynamics
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In this paper three problems are considef@dthe maximal work that can be produced in a finite time in a
thermodynamic system(p) the minimal work which must be done in order to transform an equilibrium
thermodynamic system into a number of subsystems that are out of equilibrium with each other in finite time;
and(c) the maximal power that can be achieved in a finite time. The mathematical features of these problems
are investigated. It is shown that in many cases the limiting work processes here are processes where intensive
variables are piecewise-constant functions of time, and that these functions take not more than some predefined
number of values. It is demonstrated that many results obtained for a number of particular sysatns
engines, heat transfefollow from the general conditions for limiting processes derived in this paper. Condi-
tions for limiting work regimes in mass transfer processes are obtained.

PACS numbd(s): 05.70—a, 44.90+c, 82.60—s

[. INTRODUCTION irreversibility are processes that occur on the boundaries be-
tween the subsystems, which are in contact. The solution of

The maximal work problem is one of the major problemsthe maximal work problem in finite-time thermodynamics
in reversible thermodynamics. It has the following foff).  gives an estimaté\} () that is significantly more realistic

Given a thermodynamic system that consists of a num- than the one given by reversible thermodynamics. Unlike

ber of subsystems with different initial values of their ~ AJ, it takes into account kinetic factofsiass and heat trans-

intensive variablestemperatures, pressures, chemical fer laws, kinetics of chemical transformations, gtelere the
potentials etd. and which are insulated from each  problem of maximal power can also be stated:

other, what is the maximal world$, that can be pro- %

d . ) — Aj(7)

uced if contacts between these subsystems were al = —.max

lowed? During this process the subsystems’ intensive T b

variables approach each other. _ _

Classic thermodynamics states that in order to obtain thén€ guestion here is how to choose such that the average
maximal work all the exchange processes in the system mugower is maximal. For reversible processes the value isf
be reversible when the differences between the values drfinitely close to zero. The minimal work problem for finite
intensive variables of the subsystems are infinitely small. Ir7 iS generalized in a similar fashion.
order to obtain finite work here, the duration of such pro- The following inequality holds:
cesses must tend to infinity. * 0. A0 .

The inverse problem seeks the minimal waék required AT(NZAT=Agt An=Aq (7). @
to separate an equilibrium system into a number of subThe characteristic dependencies of the maximal work pro-
systems with given values of intensive variables. We Sha”ducedA’g(r) and the minimal work expende&* (7) on r is
call this problem the “minimal work problem.” It is clear ghown in Fig. 1.
that in the case of reversible processes, when there are no | finjte-time thermodynamics the maximal work problem
irreversible equilibrium processe@mixing) in the direct  for thermomechanical systems with a number of conditions
problem, the minimal work required is exactly the samejmposed on the contacts was formulated by Rozonoer and
work as the maximal work that can be obtained in the directrgjyin [2] as an optimal control problem. They demonstrated
problem, i.e., A’=AJ. In a more general cas&’=Aj that this problem can be reduced to an averaged nonlinear
+AY , whereA? denotes the work in irreversible equilibrium programming probleni3], and they used a corresponding
processes. mathematical technique to investigate the general structure

In finite-time thermodynamics the maximal work problem of its optimal processes. The particular case of this problem
has the same form as above, but includes an additional coffier a thermodynamic system that consists of an infinite ca-
straint on the process duration[2]. It is assumed that each pacity source(reservoil and a subsystem with controlled
subsystem is in internal equilibrium, and the only source otemperaturgdworking body was considered in Ref4], and

later in a more detailed form in Ref§5,6]. In Ref. [6] a
system with a number of reservoirs was considered.
*Email address: tsirlin@sarc.botik.ru A large number of papers concerned with the limiting
"Email address: kaz@arch.usyd.edu.au possibilities of heat engines with a finite cycle have been
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between subsystems is established, then energy and mass

AF flows [q;,(z ,z,] and g;,(z,z,)] will be established be-

! tween subsystems. The subsciiptdenotes the direction of
the flux from theith subsystem to theth subsystemg;, is

A? ------------------------------ - - the vector flux that contain® componentsrf is the number
AOm of different chemical components in the sysjefaunctions

g;, andg;, are equal to zero if;=z,. From energy and
mass conservation, it follows that

qiv(zi sz): _qvi(zvyzi)r

giv(zivzv):_giv(zvvzi)i Vi,V. (2)

T . . .
We assume that the reservoirs’ intensive varialdgsare

FIG. 1. The dependence of the work of separa#fgi(7) (that  fixed and constant; the intensive variables of the working
must to be spent for a separation of the uniform system into &o0dy z, are the control variables of the problem and at each
number of subsystemhgind the maximal worldj (7) (that can be moment of timet belong to some sdd,, and the intensive
produced by an equalization of the subsystems’ parametarthe  variables of the passive subsystems are functions of their
duration of the process;* is the duration of the process that de- extensive variables:
livers the maximal power.

Ze=1(Ee,Se,Ne)- (3
published(see, for example, Reff7,8,11]). A heat engine is
a system that consists of two or more heat reservoirs and a In addition to the vectogy(t), other control variables in
working body. In comparison, the minimal work problem this problem are the contact functioms,(t) and U (t),
has not been investigated as thoroughly, either for thermoahich can be equal to 1 or zero only. If the contact function
mechanical systems or for systems where heat exchange pris-equal to 1, then the corresponding flux can exist, and if
cesses are accompanied by mass-transfer and chemical tratigs function is equal to zero then it cannot.
formations[9]. The extensive variables of each of the subsystems obey

In this paper we consider the problems of minimal anddifferential equations of thermodynamic balances. The en-
maximal work in a more general form than in REf], which  ergy balance has the form
allows us to consider not only thermomechanical systems but
systems with mass transfer processes and chemical transfor-
mations. The structures of maximal and minimal work re-  E,= 2 [UR0i,(2,2,)+ U8 u,0,(2,2,)]-1,(0),
gimes, as well as those of the maximal power regimes, will
be derived. We will show that for a wide class of systems in
the limiting work regime the system’s entropy is a
piecewise-linear function of time, and that its intensive vari-
ables are piecewise-constant functions of time for any law of "€ SUmming here is done on allincludingi =», because

heat and mass transfer. The relation between the solutions 8f»~ 9vv= 0; r,(t) is the mechanical work produced by the
the maximal and the minimal work problems will be ascer- vih subsystem i >0 and the work expended if<0; the

tained[10]. We will consider a number of important particu- second term in the square bracket above is the scalar product,

lar cases, and demonstrate how their solutions follow fronj@t iS, the sum on the subscripfrom one tom for each

the derived general optimality conditions. combination ofl and ». .
The mass balance on each component is

n

4

v=1,...n.

Il. FORMAL STATEMENT OF THE PROBLEM AND , n
CHARACTERISTIC FORM OF ITS OPTIMAL SOLUTION Ny=21 U?0i.(z,z,)=n,(u,z). (5

Let us divide all the subsystems in the thermodynamic .
system under consideration into three categofiBssources  The entropy balance is
of infinite capacity(reservoir$, (2) sources of finite capacity

(passive subsystemsand(3) subsystems with controlled in- . 12 U g

tensive variablegworking bodie$. The vectors of intensive ”:T_ Z‘ U70in(zi,2,) + U7, ui,9i0(2i,2,) ]
variables for each of these types of systems are denoted as

Z,, Z., and z, correspondingly. The components of these =o,(U,2), v=1,...n. (6)

vectors are temperatures, pressures, and chemical potentials

of the corresponding subsystem. The components of the ve@ecause some additional constraints can be imposed on the
tor of extensive variables for each of these subsystems amontact functions, we will assume thdte D,,, whereD, is
internal energyE;, entropyS;, and the mass of each of the a subset of the vertices of the unit hypercube in the positive
components,N;; (i=1,...n and j=1,... m). nis the quadrant, with one vertex at the coordinate origin.

number of subsystems in the system, ami$ the number of The criteria of optimality in this problem is the work
different chemical components in the system. If a contacthat is produced by the system
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;0 (2) If only objective(8) and constraint$9) depend on the
Adzf Z r,(t)ydt—max, volumesV,(7) and neitherS(7) nor N(7) depends on the
0v=1 volumes, then the optimal choice of volumes is given by the

or, after taking into account Eq&2) and (4), solution of the following problem:

n

E(n)= El E,(SE(7),N*(7),V,)— min. (13
v= VeDy

n

Ad=§l [E,(0)—E,(7)]—max. (7

Because the initial state of the system is given, condition In particular, if the total volume of the system is fixed,
corresponds to the condition n
n > Vo (D=V,, (14)
) v=1
E(r)= 2 E,(7)—min.
vl andE, is a concave function of,, then conditiong13) and

Since the internal energy of each of these subsystems dél4 lead to the conditions
pends orS,,V,, andN,, we obtain (aE

N,

) =—P,(r)=const VY . (15

n
E(1)=2, E([(S,ot70,(u,2)],
v=t Thus, att= 7, the volumes of the subsystems with optimal or
XN, o+ TM],V (7))— min . (8) fixed values ofS,(7) and N,(7) must be chosen from the
v Y Y TEY condition of equal pressures. If one of the subsystems is a
reservoir whose pressure is constant, then from (E§). it
The overbar here denotes the averaging of the correspondirigliows that att= 7 the pressures in each subsystem with the

function over the interval (@). Thus controlled volume must be equal to the pressure in this res-
1 ervoir, P,,.
n(uz uz)=— Tn u(t),z(t))dt. (2). If the system does not include passive subsystems,
W(U.2) TJ’O H(u(1),2(1) then problemg8), (5), and(6) become not optimal control

problems but averaged nonlinear programming problgghs
The internal energy has to be minimized subject to E§s. Indeed, in this case the right-hand sides of Egg.and (6)
and (6), constraintg3) for the passive subsystems, the con-do not depend on the state variablsand S Therefore,
straints on volume of the subsystem, these equations can be dropped from the problem formula-
tion, and condition(11) can be rewritten aM equations:

V(t)eDy, 9
the constraints on the variablesandz,,, mz %(S';—SVO):;V, v=12,...X=n,
U(t)eDy, zy(t)eDy,, (10) (16)
and the constraints on the final values of the entropy and W= ;(NEJ_ijo)v (J,v)eq.

chemical composition for some of the subsystems,

The optimal solutionW* (t)=(U*(t),z*(t)) of problems

(8), and (16) (Ref.[9]) is a piecewise-constant vector func-
(1) tion. It takes not more thanM +1) values ofW' on the
interval (07). W*(t) takes each of theskasic values(or
basic solutiong W' during the fractiony, of the interval
(0,7)(3/'20,2,'\":0%:1). Note that the actual sequence in
which differentW' are taken does not matter. Each of the
basic values obeys the condition

S(n=S, v=12,...x=n,
N,i(1=N, (j,») e,

Here() is the set of all such combinations of the subscrjpts
andv, for which the amount of th¢th component in theith
subsystem is fixed.

Assume that the total number of constraifis|s.(11)] is

m. The following equations hold here: n
JE, JE, L=[ ,2, TDo U+ 2wy (1n,(u.2)
(&Sy)tTZTV(T)>O, —(avy)”=PV(T)>o, X ’
JE, 2 MU =o)F 2NN, (u2)=ny)
(&NVJ)tT::U’Vj(T)>Oi (12
whereP, is the pressure and the,; is the chemical poten- —>T1|Zn] mxax n

tial of the jth component in thesth subsystem. Let us dis-
cuss the mathematical features of this problem, which infhe multipliersT,(7) and u,;(7) have been used here in
many cases can make its solution significantly simpler. order to account for conditio(lL2) of the equation of state.



310 ANATOLY M. TSIRLIN AND VLADIMIR KAZAKOV PRE 62

In order to find the values of these variablegich in the  minimal work that has to be speifif its internal energy
general case differ from the optimal valuBg(t) and u,;(t) increasekis achieved in a process when the vector of inten-
on the interval (05)], the following equations have to be sive variables and contact functions are piecewise-constant
added to conditior{17): functions of time on the interval (8) and the number of

values this vector function takes is not more tham+1).
S, (T(7), V5 ,u,(7),N,(7))=S,(0) + 70,(U,2), HereM is the number of fixed values of entropy and mass for
the working bodies at time= 7. At the beginning and at the
v=x+1,...n, (18) end of this process the intensive variables of the working
bodies instantaneously change to some optimal values and
N, ;j(7)=N, ;(0)+mn,(u,2), »,j&Q. the entropy of the system increases over the interva) (&
a piecewise-linear function.

Conclusion:If there are no constraints on the composition
and on the entropy of the working bodies at titrer (M
=0) then, in a maximal work process, the system’s entropy
—smax increases with a constant rate for any law of heat and mass

0 transfer, and each one of the working bodies stays in contact

with only one reservoir during a limiting work process.
For the differentiable and convex dependence of the Pro- The maximal work problem for a system which contains
duced work on the duration of the process, the optimalitypassive subsystems turns out to be an optimal control prob-
conditions for this problem yield the following equation for |em with discrete control variableg(t). It can be solved
T analytically only in a very few cases.
. . . It is clear that the problem of minimal used wo#{ ,
(dAd> _ d(m) (19 coincides with the formulation of the maximal work .
dr | . ~ The only difference is the sign of the derived solution. If the
work on the optimal solutiod\} is positive, thenA =A}
If there are no conditions like Eq6) in the problem ¥ +AC | if it is negative, thed A% |+ A% =A* . HereA? is the
=0), then the solutiotW* (t) is to be found from the con- work in irreversible equilibrium processes.
dition

In the maximal power problems the optimal periedl is
determined as a solution of the following problem:

AL (7)

r(r)=

. MAXIMAL WORK PROBLEM

n
. IN THERMOMECHANICAL SYSTEMS
El TN, (U2)+ 2 py(7)n,i(u,z2)—  min
v= v,]

ueDy.zeD; In a thermomechanical system temperature is an intensive
(20 variable, and extensive variables are volume, entropy, and
internal energy. From the maximal work theorem, which was
formulated in Sec. I, it follows that a maximal work process
consists of isothermal and adiabatic branches. It includes not
more thanM +1 isothermal branches and not more thdn

can be divided intdV® subset MO< (M +1)], andL is a _+2 adiabatic temperature jumps. Two of these temperature

concave function on each of these subsets, then the numbiMPS occur at the beginning z_;md end of the Process.
of basic solutions is not more thavl®. The proof of this The rate of entropy change in a thermomechanical system

statement follows from Eq.17).

jointly with Egs. (18). This solution does not depend on time
for any form of process’ kinetics that determiog andn,; .

If the functionL in Eq. (17) is concave orW for all \,
then there is only one basic solution: if the &}=D D,

The fractions of the timey, are to be found from condi- 10
tions (16), which take the following form after substitution S,=a,(uT)==— > U;,q,T;.T,). (22)
of the basic solutions T, =1
" — For reservoirs the entropy, volume, and internal energy are
Z no,(W)=o,, v=12,...%, related to each other via the equation
o Eo=ToSo— PoVo.
2 yng(WH=n,;, (1,1eQ, (29)

It is easy to show that if a system consists of a reservoir and
n—1 subsystems, then the work can be rewritten as the fol-

lowing function of the entropy production:

%=0, > y=1.
| n—-1

n
As the result of the derivations described above, we for- A= ;1 (TOAS”_AEV)_TO,,El o, (u,T). (23
mulate the following statemerfthe theorem of the maximal
work): If a thermodynamic system consists of a number ofThe last term includes the average rate of change of the
reservoirs and a number of working bodies then the maximaleservoir’s entropy. Thus, for the given initial and final states
work that can be produced by this system during the perio@f the subsystems, the maximal produced wéminimal
of time 7 (if internal energy of the system decregsesthe  spent work corresponds to the minimal entropy production
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FIG. 2. The structure of a thermodynamic system which consists
of insulated subsystems and reservoirs.

in the system. Therefore, in a system with reservoirs, the
optimal processes turn out to be the minimal dissipation pro-
cesseq9]. Let us consider what are the specific forms for
these optimality conditions in some important particular
cases of thermomechanical systems.

(©
A. Independent subsystems that contact with a reservoir
. — . FIG. 3. The characteristic dependencies of the limiting spent
Let us consider the system shown in Fig. 2. It consists o(/vork and limiting produced work on the contact duratien(a)

n subsystems that are insulated from each other and th@hresponds to the positive increment of the system’s entopyo
contact with the reservoir. The temperature of the reservoir ighe negative increment, arid) to AE>T,AS.

T, and its pressure iBy. We assume that the initial states of
all subsystems and the parameters of the reservoir are given To
and the total volume of the system is constant. T =,
Each one of the heat fluxes,(To,T,) and the entropy 1+ASar
productiono,(T,)=(1/T,)q,(T,,T,) depend on one control
T,. Because this flux can be switched off by settifig
=T,, there is no need to use contact functidhs here. T ASar
The maximal work problem in this system can be decom- A*(1)= “7As AE (27)
posed inton subproblems about the optimal contact with a

reservoir for each of the subsystems. From conditid®  Here AE=E(S(7),V* (7))—E(S(0),V(0)).
here, it follows that the pressure in each of these subsystems pgsyme that we comput&? (7) using formula(27). If it

att=r is Po. The maximal power problem requires taking jg nositive then it corresponds to the maximal produced work

Int(I):i?;:tc\(/)vl:anEg:;;a;t?algtﬁzzfrna; %obriysirt;}:m for the o Ar (7). If it is negative then it corresponds to the minimal
P P~ spent workA* (7) =|A*(7)|.

timal contact between the reservoir and the working body. In In order to make dependené&?) more specific, we will

this section we will now omit the subscript If the entropy . .
of the working bodyS(7) at the end of the process is given assume that each of the subsystems is close to the ideal gas.

at+AS>0.

The optimal work is

and the volumev* is determined by the conditioR= P, Then
then the internal energy of the working bo# ) is fixed T(7) Po
and the minimum of the system’s internal energy corre- AS=CpInW—RInP(O). (28
sponds to the minimum df,. Thus we arrive at the follow-
ing formulation: Here we took into account the condition thattat r the
TaT-T AS pressures in subsystems are equal to the reservoir’s pressure.
q(TO,T)—>max/ (M) - (24) Equation(28) can be used to expre$g7) in terms ofAS
T T T andAE=C,[T(7)—T(0)]:
For the linear law of heat transf Po |\  [AS
or the linear law OT1 heal transter, AE(AS)ZCVT(O) exp — | —11. (29)
P(0) Cp
q(T01T):a(TO!T)1 (25)

The substitution of Eq(29) into Eq. (27) yields the depen-

thi borobl . tinated in R df denceA* (7,AS). The characteristic forms of the dependen-
is subproblem was investigated in Rgd], and for a more cies of the maximal work and minimal work anare shown
general law in Fig. 3

K If the value of AE, which is calculated using formula
A(To, T)=a(To—T), (260 (29, is positive, then such a value of exists that no work
can be produced by the system in any process with a shorter
wherea andk both have the same sign, it was considered induration thanr. If the entropyS(7) is not fixed then, in-
Refs.[4-6]. stead of problen{24), we obtain the problem of minimiza-
For the linear law of heat transfer, probld@4) is a con-  tion of the system’s internal energy. According to E2p) it
vex one, and it has a unigue solution has the form
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(T(T) ) .
———1/q(Ty,T)—min (30
T T>0
subject to

AS=S(r)—S(0)= TQ(TO—;T).

FIG. 4. Subsystems that contact with a reservoir and with each
After taking Eq.(28) into account for the ideal gas and the other.
linear law of heat transfer, the last equation can be rewritten

as " A AS;
> Si( S

7) Po To =1 o7+ AS aiT+ASi_
)— nw—ra(?—].). (31)

1) To §n‘, AE; (A
T ~ 2 AE(AS).
Cp In T(_O RI
) _ The power that can be derived in a finite-time process is
According to Eq.(30), for q=a(T—T), we obtain limited, but the power used in it can be infinitely large.
T(r) T T2 For a heat flux that has the form of E(5), for 0<k
=—=T(r)==—. (32 <1 and forAS <0 the regime with the minimal work;* (t)
T To To can be a switching regime when the temperature switches
between two basic values. One of these basic values corre-
sponds to the maximal feasible temperature of the working
body [5]. But this change of the solutiom* (t) does not
change the dependence At (7) on 7.

Its substitution into Eq(31) yields the following equation
for T*:

T Po

Tor0) "Mp(o) =

TO| — —
T*

2Cpln

1). (33
B. Subsystems that contact with a reservoir and
Because the right-hand side of this equation is a strictly in- with each other

creasing function off*, and the left-hand side is a strictly  Fjrst we consider the system that is shown in Fig. 4. For
decreasing one, this equation has a unique solution whickimpjicity we assume that the volumes of the subsystems at

determines the limiting work: t=r are fixed, and tha$;(7) are also fixed. The minimiza-
(T*)2 tion of system’s internal energy at r leads to conditions
A§(r)=—AEmin=Cv<T(0)— | +ar(To—T*). (1),
0

(34) 2
. . L=1> [UiQi(To,Ti)
One can easily demonstrate that during a contact between =1
a reservoir and a passive subsystem, whose temperature is a

function of its internal energy, the work produced in the H\_(Uiqi(TO'Ti)+U21QZ1(T2'T1)(_1)I —ASi”
system is equal to O for any contact functiort). ' T
In the maximal power problem
—>max] —min,
2 A7) vThooa
n(r)= I——>ma>g
T >0 whereAS,=S(7)—S/(0).

o N _ The limiting work in the system, which is shown in Fig. 4,
the optimality condition for the convex functiomg7), that s never lower than the limiting work in the system, which is

is, for such functions\;(7) that obey the inequality shown in Fig. 2, because fdi;=U,=1, andU,,=0 these
) g systems are identical.
. A . Lo * - . . ;
E i 2 2A(7) <27’E i(7) , . Since the limiting WoikAd is a strictly glepreasmg func
T\ dr? T dr tion of AS and\;=—JAj;/JAS;, the multipliers\; are al-
ways positive. For the linear heat transfer laws
takes the form
5 dA A7) i=ai(To=Ti), Ou=ax(T,—Ty),
i (F_ )

the functionL is convex onT; andT,, and the problem has
After taking into account Eqg29) and (30) for the above- only one basic value of vector. The contact functiob*
described heat transfer laws and working body characteris=1 if q;(To,T;)[1+(N;/T;)]>0, that is, if To>T;. Be-
tics, we obtain the following equation for the duration of cause of this, the optimal values Bf andT, are determined
maximal power process;*: as
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To— 0oy — 1) To(7) a
w2~ Gau 1) Cpoln =—=— (T~ T)=apn(w—1). (39
r= @ T AS , i=1,2. v2 Tao Tz( 2—T1) 21(
Here o= U,1021(T,,T1). The produced work is Conditions(38) and(39) determineTy (7), T5(7), andw, .
Because the temperatufg and T3 are not defined uniquely
Ag=T1(Q1(To,T) +0x(To,T3)) here, some additional condition could be imposed on the
system that should defin€ and T3 . This could be, for
ag a3 . —
=7 To| ay+ ar— — } example, the condition that the average rate of heatdlis
[ a1+AS;  a,+AS, fixed. In this case,
+Ugppagy(To—Ty)| —2 “ pv =
2101(T2—Ty) 0t AS, a;+AS | — qo* T q
=, _
(35) az(l-o”) axn(l—o*)
One can ea§ily show th_at for any signapf, the multiplier in IV. MASS TRANSFER PROCESSES
front of U, in Eq. (35) is positive. ThereforeU3,=1. The
temperature§* andT3are constant over the interval ¢, Let us consider a class of systems which are described not
and are to be found from the following systems: only by their temperatures, volumes, and pressures, but also
by their chemical composition. The chemical composition
for the vth subsystem is determined by the vector of concen-
212 ToTa(7)  To(7) . > )
a ITI(TI— Ty To)=ap| ——5—— | trations C,=(C;i;, . .. ,Cjx) or by the vector of chemical
Tl 2 pOtentialS/Lv(Ti !Pi !Ci):(Mil! Ce ,,U,ik).
(36 Assume that the chemical potentials of the subsystems
T,To(7) Tyu(7) and the contact functiorld,; are the problem’s control vari-
212 e
ay I To(To=Ta(7)To) = azl T T, ables. The problem of minimal work, that must be done to
2

transfer the system from a given initial state to a given final

state, turns out to be identical to the minimal work problem

For subsystems thaf[ are clos_e to the ideal gases and 5 e thermomechanical system where the subsystem’s
Vi(7)>Vi, the following equation should be added to con-emperatures are the control variables. Its solution gives a

ditions (36): lower bound to the limiting work in the system. For any
physically meaningful mass transfer lagy,, this limiting
AS=C,n Ti(7) work regime consists of three branches: an instantaneous
U T(0) jump of the chemical potentials’ vectqe from w(0) to
1 some optimal leve*; a “holding” of this vector on this
= f(ai(Tn—Ti)—alz(—1)'(T2—T1)), i=1,2. level at the interval (&;); and a jump at= 7 to some value

p* (7). The valuesu* and u*(7) are determined by the
(37) constrained problem, and by the equations of state of the
subsystems, which relay the internal energy, the entropy, and
This determine§ and T} (7). the chemical potential at=7. Here the entropy5(7) de-

The maximal workA% and the minimal workA* are Pends onS(0) andu*.

determined as the sum of the increments of the subsystems’ But this estimate could be relatively inaccuraaéthough
and reservoir's internal energies: it is more accurate than a reversible estimaféis is pos-

sible because in thermomechanical systems the optimal sub-
systems’ temperature profil&$ (t) can be easily converted
A* =|[Eo(0)=Eo(7)] into the optimal volumes’ profile¥* (t) (which are the ac-
tual controls in the probleimusing their equations of state.
The situation is quite different for the chemical potentials.

. Here the changes of volume or pressure in each of the sub-
T=T*T(1)=T*(7) systems influence the chemical potentials of all the compo-
) o nents that are present in this subsystem. Therefore, in the
If there is no reservoir in the system, theR=U,=0. From  general case it is not possible to find such a funciitrgt)

+Z [Ei(0)—Ei(7)]

Eq. (36) it follows that which corresponds to optimal time profiles of the chemical
potentials for a number of components. For systems that are
E: T1(T):w (39) close to ideal gases, the chemical potential of itthecom-
T, Ty(r) ponent is[1]
Condition (37) can be rewritten as Li(T,P)=punio(M)+RTINP;, i=1,...Kk,
Ti(7) @z _ 1 _ whereP; is the partial pressure of thigh component. Let us
Coan ——=—(To=Ty)=an ——1/,
T1o T, 1) now denote the volume of the subsystemVasand assume
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that at any instance of time the volume and the pressure are v
always related to each other via the Boyle-Marriott equation

PV=NRT,

whereN is the number of moles in the subsystem, and
Ny
Pi:PCi:PWI |:1,...,k.

Let us express; in terms ofV:

,ui(T,V)=,ui1(T)+RTIn%, i=1,...k (40 1)

Here ui1(T) = wio(T) + RTINRT. FIG. 5. The schema of a diffusion-mechanical cycle.
For thewth subsystem,

AEq= f (ho+ 10)9( o, p)dt,

NVi:; gij,,(/J,,,,,uj)Uj,,, V=1,...,n, i=1,...,k, 0
(41) v
fo w(t)g9(mo,m)dt=TAS, (45)
1
ST 121 izl UjobtinQpoi (Ko t4y). 42 2nd in accordance with E€17), we find for the basic values

of u by solving the auxiliary problem
Since the right-hand side of E41) and u,, do not depend
on the number of moledl,, Eqgs.(41) are not Lyapunov
equations, and the problem of finding the functiohngt)
that maximize the work producddr that minimize the work
expendeilis a general type of optimal control problem. Here

for simplicity we assume that this is an isothermal massafter finding one or two basic values @i* from Eg. (46),

transfer process, that all the temperatures are equglaod  N* () s to be calculated, and then(7) is found from the
that there is no heat exchange in the system. condition

AST
L g(Mo-M)(M(ho"‘Mo)_)\M(T))‘H\T —min max
©n

A
(46)

A. Mass transfer with a reservoir S(u(7),N*(7),V*(7))=S(7). (47)

Assume that a system consists of a reservoir with tem-
peratureT, pressureP,, and chemical potentigky, and a
working body with the same temperature, volukie 0, and
chemical potential.. The initial states of the working body’s — o2
variablesk,, Sy, Ng, andV, are given. For simplicity we du? du
assume that the number of components=sl. The working
body’s variables relay to each other via an equation of state—then the problem has a unique solution. One can show that

in this problemA>0 anddg/du<0 always. Thus for the
Eo=E(So,No,Vo). majority of the dependencies g{«), the condition of con-
ecavity of L holds, andu* is determined by the equations

If the Lagrange functior is concave oru—that is, if

S(7) is given. The combined volume of the reservoir and th

working body is constant. [S(7)—S(0)]T
In the maximal work problem it is required to minimize pno(pg,p)= —m—,
the system’s internal energy &t 7. T
A=AE=[E(0)—E(7)+Ey(0)—Eqy(7)]—max. (43 N*(7)=No+9(mo, ™),
HereEy andE are the internal energies of the reservoir and AEp=(hg+ o) g( o, u*) 7.

the working body, correspondingly. The maximization is car-

ried out onV(7) and onu(t) over the interval (G;). The  The substitution of these expressions into &) yieldsA* .
conditions of maximum onV(7) yields that, att=r, the

pressure in the working body must be equal to the pressure in B. Cycle with two reservoirs

the reservoir. From the condition . . . )
Consider a system with two reservoirs and a working

[AEq+E(S(7),N(7),V*(7))]—min, (44) body that can contact with each reservéitig. 5. The
chemical potential of the key componentus. in one reser-
where voir, and isw_ in another(for definitenessp . >u_).
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Because this is a cyclic process, the increments of the
entropy, the internal energy, and the key component’s mas:
in the working body during the cycle are equal to zero. The
temperatures of all subsystems are the same.

The change of the system’s internal energy is equal to the
change of the sum of reservoirs’ internal energies. We denot

the reservoirs’ chemical potential as, and the working
body’s chemical potential gg. wq can take two valueg ,
andu_ . The work

A=Eg(0)— Eo(7)= J'OTh(Mo)g(,U«OaM)dt—’maX (48)

Bo .k

is subject to constraints on the changes of the working

body’s entropy and mass:

1 (7
AS= ff 9(mo,m)(h(po) —p)dt=0, (49
0

AN= JOTQ(MO-M)dtZO- (50

From Eq. (49) it follows that the maximum of the work
corresponds to the maximum

A= f (120, m)dt—max (51)
0

subject to condition(50).

In order to find the basic values and u in problems
(50 and(51), we will write the Lagrange function and find
its maximum onug, and . and its minimum o\ :

L={g(mo,m)(pt—N\)—max—min.
oM A

The number of basic solutions is two; one basic solution

corresponds t@g= . , and the other one tag=pn_ . For
L, which is a strictly convex function of, the basic values
u obey the conditions

on_% \)+ =0
@—@(M )+9(pmo,p)=
or
9(po.m) 99
TR i’

Let us denote the root of this equation fap=x_ as uq,

and that forug=u, asu,. Becausd. attains its maximum

in both basic solutions,
L(/.L+,/.L1,)\)=L(/-L_,,LL2,)\). (52)

This equation determines the valuexf

A

FIG. 6. The characteristic dependencied.qof andL _ on \.

Mot A
5

m= (54)

Substitutions ofu, andu, into functionL yields the depen-

dence ofL for each of the basic solutions

a 2
Li=L(ps p1)= T(PH_)\) ,

o _
Lo=L(p- )= (u-—N)

The minimum on\ for the maximum ofL on uy and w is
attained in(see Fig. 6.

\/CV_+M++\/IM—
Vo, +a_

The fractions of time when contacts with reservoirs are es-
tablished are determined by conditi¢g0), and are

 a e,
T Vartaa

Y e Vastaa

The limiting work obtained during is

L.(N)=L_(\)=A*= (55

a_

A*(T) =1y pmray (e —p)+y-poa_ (1= po)],

where u; and u, are determined by Eq55), where\ is
substituted from Eq(56).

V. CONCLUSION

The solution of the problem of finding the maximal work
that can be produced in a thermodynamic system without
restrictions on the process duration does not depend on the
equations of state and on the fluxes’ kinetics in the system.

Let us derive the particular form of these dependencieghis limiting work regime is achieved in a reversible process

for

(o, p)=a(pmo) (o= ). (53

From condition(52), we obtain

of equalization of the subsystem’s intensive variables. The
maximal work here is equal to the difference between the
combined internal energy of the system in an initial state and
in a limiting equilibrium state. In the inverse problem of

minimal work that must be expended in order to transform
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the system from an equilibrium state to a given final statestate the internal energy of each subsystem is a monotoni-
this minimal work exceeds the corresponding maximal workcally decreasing function of its entropy. Because this depen-
by the term that compensates for the irreversibility generatedence is not linear, the minimization of the combined inter-
by equilibrium processes similar to mixing processes. nal energy of the system is not equivalent to the

If these limiting work problems contain restrictions on the minimization of its total entropy. However, in many particu-
duration of the process, then they become optimal contrdlar cases the problem’s constraints allow us to reduce the
problems. These optimal control problems have a number dfmiting work problem to the minimization of the internal
mathematical features that make the structure of finite-time&nergy of one of its subsystems, and thus to the minimization
limiting work regimes independent of the equations of theof its entropy increment. For example, this is the case if the
subsystem’s state and on the processes’ kinetics in marfinal state of every subsystem except one is given. A similar
practically important cases. Here the controlled intensivgoroblem was considered abojgee Eq(23)].
variables are piecewise-constant functions of time, and the The maximal power problem has the same solution struc-
extensive variables and the system entropy are piecewisgédre as the maximal work problem, but differs from the latter
linear functions of time. Note that the minimal work of sepa-because the duration of the processs not fixed but is
ration of a system in equilibrium into a number of sub- chosen to maximize the ratid; (7)/r.
systems depends uniquely on the maximal work in the direct
process and on the reversible work of separation. ACKNOWLEDGMENT
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