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Maximal work problem in finite-time thermodynamics
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Vladimir Kazakov†
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In this paper three problems are considered:~a! the maximal work that can be produced in a finite time in a
thermodynamic system;~b! the minimal work which must be done in order to transform an equilibrium
thermodynamic system into a number of subsystems that are out of equilibrium with each other in finite time;
and~c! the maximal power that can be achieved in a finite time. The mathematical features of these problems
are investigated. It is shown that in many cases the limiting work processes here are processes where intensive
variables are piecewise-constant functions of time, and that these functions take not more than some predefined
number of values. It is demonstrated that many results obtained for a number of particular systems~heat
engines, heat transfer! follow from the general conditions for limiting processes derived in this paper. Condi-
tions for limiting work regimes in mass transfer processes are obtained.

PACS number~s!: 05.70.2a, 44.90.1c, 82.60.2s
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I. INTRODUCTION

The maximal work problem is one of the major problem
in reversible thermodynamics. It has the following form@1#.

Given a thermodynamic system that consists of a num
ber of subsystems with different initial values of their
intensive variables~temperatures, pressures, chemical
potentials etc.! and which are insulated from each
other, what is the maximal work,Ad

0 , that can be pro-
duced if contacts between these subsystems were a
lowed? During this process the subsystems’ intensive
variables approach each other.
Classic thermodynamics states that in order to obtain

maximal work all the exchange processes in the system m
be reversible when the differences between the value
intensive variables of the subsystems are infinitely small
order to obtain finite work here, the duration of such p
cesses must tend to infinity.

The inverse problem seeks the minimal workAi
0 required

to separate an equilibrium system into a number of s
systems with given values of intensive variables. We sh
call this problem the ‘‘minimal work problem.’’ It is clea
that in the case of reversible processes, when there ar
irreversible equilibrium processes~mixing! in the direct
problem, the minimal work required is exactly the sam
work as the maximal work that can be obtained in the dir
problem, i.e., Ai

05Ad
0 . In a more general caseAi

05Ad
0

1Am
0 , whereAm

0 denotes the work in irreversible equilibrium
processes.

In finite-time thermodynamics the maximal work proble
has the same form as above, but includes an additional
straint on the process durationt @2#. It is assumed that eac
subsystem is in internal equilibrium, and the only source

*Email address: tsirlin@sarc.botik.ru
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irreversibility are processes that occur on the boundaries
tween the subsystems, which are in contact. The solutio
the maximal work problem in finite-time thermodynami
gives an estimateAd* (t) that is significantly more realistic
than the one given by reversible thermodynamics. Unl
Ad

0 , it takes into account kinetic factors~mass and heat trans
fer laws, kinetics of chemical transformations, etc.!. Here the
problem of maximal power can also be stated:

n̄5
Ad* ~t!

t
→max

t
.

The question here is how to chooset* such that the averag
power is maximal. For reversible processes the value ofn̄ is
infinitely close to zero. The minimal work problem for finit
t is generalized in a similar fashion.

The following inequality holds:

Ai* ~t!>Ai
05Ad

01Am>Ad* ~t!. ~1!

The characteristic dependencies of the maximal work p
ducedAd* (t) and the minimal work expendedAi* (t) on t is
shown in Fig. 1.

In finite-time thermodynamics the maximal work proble
for thermomechanical systems with a number of conditio
imposed on the contacts was formulated by Rozonoer
Tsirlin @2# as an optimal control problem. They demonstrat
that this problem can be reduced to an averaged nonlin
programming problem@3#, and they used a correspondin
mathematical technique to investigate the general struc
of its optimal processes. The particular case of this prob
for a thermodynamic system that consists of an infinite
pacity source~reservoir! and a subsystem with controlle
temperature~working body! was considered in Ref.@4#, and
later in a more detailed form in Refs.@5,6#. In Ref. @6# a
system with a number of reservoirs was considered.

A large number of papers concerned with the limitin
possibilities of heat engines with a finite cycle have be
307 ©2000 The American Physical Society
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308 PRE 62ANATOLY M. TSIRLIN AND VLADIMIR KAZAKOV
published~see, for example, Refs.@7,8,11#!. A heat engine is
a system that consists of two or more heat reservoirs an
working body. In comparison, the minimal work proble
has not been investigated as thoroughly, either for ther
mechanical systems or for systems where heat exchange
cesses are accompanied by mass-transfer and chemical
formations@9#.

In this paper we consider the problems of minimal a
maximal work in a more general form than in Ref.@2#, which
allows us to consider not only thermomechanical systems
systems with mass transfer processes and chemical tran
mations. The structures of maximal and minimal work
gimes, as well as those of the maximal power regimes,
be derived. We will show that for a wide class of systems
the limiting work regime the system’s entropy is
piecewise-linear function of time, and that its intensive va
ables are piecewise-constant functions of time for any law
heat and mass transfer. The relation between the solution
the maximal and the minimal work problems will be asc
tained@10#. We will consider a number of important particu
lar cases, and demonstrate how their solutions follow fr
the derived general optimality conditions.

II. FORMAL STATEMENT OF THE PROBLEM AND
CHARACTERISTIC FORM OF ITS OPTIMAL SOLUTION

Let us divide all the subsystems in the thermodynam
system under consideration into three categories:~1! sources
of infinite capacity~reservoirs!, ~2! sources of finite capacity
~passive subsystems!, and~3! subsystems with controlled in
tensive variables~working bodies!. The vectors of intensive
variables for each of these types of systems are denote
zn , ze , and zp correspondingly. The components of the
vectors are temperatures, pressures, and chemical pote
of the corresponding subsystem. The components of the
tor of extensive variables for each of these subsystems
internal energyEi , entropySi , and the mass of each of th
components,Ni j ( i 51, . . . ,n and j 51, . . . ,m). n is the
number of subsystems in the system, andm is the number of
different chemical components in the system. If a cont

FIG. 1. The dependence of the work of separationAi* (t) ~that
must to be spent for a separation of the uniform system int
number of subsystems! and the maximal workAd* (t) ~that can be
produced by an equalization of the subsystems’ parameters! on the
duration of the process;t* is the duration of the process that d
livers the maximal power.
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between subsystems is established, then energy and
flows @qin(zi ,zn# and gin(zi ,zn)# will be established be-
tween subsystems. The subscriptin denotes the direction o
the flux from thei th subsystem to thenth subsystem.gin is
the vector flux that containsm components (m is the number
of different chemical components in the system!. Functions
qin and gin are equal to zero ifzi5zn . From energy and
mass conservation, it follows that

qin~zi ,zn!52qn i~zn ,zi !,

gin~zi ,zn!52gin~zn ,zi !, ; i ,n. ~2!

We assume that the reservoirs’ intensive variableszn are
fixed and constant; the intensive variables of the work
body zp are the control variables of the problem and at ea
moment of timet belong to some setDz , and the intensive
variables of the passive subsystems are functions of t
extensive variables:

ze5 f ~Ee ,Se ,Ne!. ~3!

In addition to the vectorzp(t), other control variables in
this problem are the contact functionsUin

q (t) and Uin
g (t),

which can be equal to 1 or zero only. If the contact functi
is equal to 1, then the corresponding flux can exist, an
this function is equal to zero then it cannot.

The extensive variables of each of the subsystems o
differential equations of thermodynamic balances. The
ergy balance has the form

Ėn5(
i 51

n

@Uin
q qin~zi ,zn!1Uin

g m ingin~zi ,zn!#2r n~ t !,

~4!
n51, . . . ,n.

The summing here is done on alli, including i 5n, because
qnn5gnn50; r n(t) is the mechanical work produced by th
nth subsystem ifr .0 and the work expended ifr ,0; the
second term in the square bracket above is the scalar pro
that is, the sum on the subscriptj from one tom for each
combination ofi andn.

The mass balance on each component is

Ṅn5(
i 51

n

Uin
g gin~zi ,zn!5nn~u,z!. ~5!

The entropy balance is

Ṡn5
1

Tn
(
i 51

n

@Uin
q qin~zi ,zn!1Uin

g m ingin~zi ,zn!#

5sn~u,z!, n51, . . . ,n. ~6!

Because some additional constraints can be imposed on
contact functions, we will assume thatUPDu , whereDu is
a subset of the vertices of the unit hypercube in the posi
quadrant, with one vertex at the coordinate origin.

The criteria of optimality in this problem is the workA
that is produced by the system

a
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Ad5E
0

t

(
n51

n

r n~ t !dt→max,

or, after taking into account Eqs.~2! and ~4!,

Ad5 (
n51

n

@En~0!2En~t!#→max. ~7!

Because the initial state of the system is given, condition~7!
corresponds to the condition

E~t!5 (
n51

n

En~t!→min.

Since the internal energy of each of these subsystems
pends onSn ,Vn , andNn , we obtain

E~t!5 (
n51

n

En„ @~Sn01tsn~u,z!#,

3@Nn01tnn~u,z!#,Vn~t!…→ min
u,zp ,V

. ~8!

The overbar here denotes the averaging of the correspon
function over the interval (0,t). Thus

nn~u,z!5
1

tE0

t

nn„u~ t !,z~ t !…dt.

The internal energy has to be minimized subject to Eqs.~5!
and ~6!, constraints~3! for the passive subsystems, the co
straints on volume of the subsystem,

V~ t !PDV , ~9!

the constraints on the variablesu andzp ,

U~ t !PDu , zp~ t !PDz , ~10!

and the constraints on the final values of the entropy
chemical composition for some of the subsystems,

Sn~t!5Sn
k , n51,2, . . . ,x<n,

~11!
Nn j~t!5Nn j

k , ~ j ,n!PV.

HereV is the set of all such combinations of the subscripj
andn, for which the amount of thej th component in thenth
subsystem is fixed.

Assume that the total number of constraints@Eqs.~11!# is
m. The following equations hold here:

S ]En

]Sn
D

t5t

5Tn~t!.0, 2S ]En

]Vn
D

t5t

5Pn~t!.0,

S ]En

]Nn j
D

t5t

5mn j~t!.0, ~12!

wherePn is the pressure and themn j is the chemical poten
tial of the j th component in thenth subsystem. Let us dis
cuss the mathematical features of this problem, which
many cases can make its solution significantly simpler.
e-

ing

-

d

n

~1! If only objective~8! and constraints~9! depend on the
volumesVn(t) and neitherS(t) nor N(t) depends on the
volumes, then the optimal choice of volumes is given by
solution of the following problem:

E~t!5 (
n51

n

En„Sn* ~t!,Nn* ~t!,Vn…→ min
VPDV

. ~13!

In particular, if the total volume of the system is fixed,

(
n51

n

Vn~t!5V0 , ~14!

andEn is a concave function ofVn , then conditions~13! and
~14! lead to the conditions

S ]En

]Vn
D

t

52Pn~t!5const ; n. ~15!

Thus, att5t, the volumes of the subsystems with optimal
fixed values ofSn(t) and Nn(t) must be chosen from the
condition of equal pressures. If one of the subsystems
reservoir whose pressure is constant, then from Eq.~15! it
follows that att5t the pressures in each subsystem with
controlled volume must be equal to the pressure in this
ervoir, Pn .

~2!. If the system does not include passive subsyste
then problems~8!, ~5!, and ~6! become not optimal contro
problems but averaged nonlinear programming problems@3#.
Indeed, in this case the right-hand sides of Eqs.~5! and ~6!
do not depend on the state variablesN and S. Therefore,
these equations can be dropped from the problem form
tion, and condition~11! can be rewritten asM equations:

sn~u,z!5
1

t
~Sn

k2Sn0!5s̄n , n51,2, . . . ,x<n,

~16!

nn j~u,z!5
1

t
~Nn j

k 2Nn j 0!, ~ j ,n!PV.

The optimal solutionW* (t)5„U* (t),z* (t)… of problems
~8!, and ~16! ~Ref. @9#! is a piecewise-constant vector fun
tion. It takes not more than (M11) values ofWl on the
interval (0,t). W* (t) takes each of thesebasic values~or
basic solutions! Wl during the fractiong l of the interval
(0,t)(g l>0,( l 50

M g l51). Note that the actual sequence
which differentWl are taken does not matter. Each of t
basic values obeys the condition

L5H F (
n5x11

n

Tn~t!sn~u,z!1 (
n, j P” V

mn j~t!nn j~u,z!

1 (
n51

x

ln~sn~u,z!2s̄n!1 (
n, j PV

ln j~nn j~u,z!2n̄n j !G
→min

u,z
J max

l

. ~17!

The multipliersTn(t) and mn j (t) have been used here i
order to account for condition~12! of the equation of state.
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310 PRE 62ANATOLY M. TSIRLIN AND VLADIMIR KAZAKOV
In order to find the values of these variables@which in the
general case differ from the optimal valuesTn(t) andmn j (t)
on the interval (0,t)#, the following equations have to b
added to condition~17!:

Sn„Tn~t!,Vn* ,mn~t!,Nn~t!…5Sn~0!1tsn~u,z!,

n5x11, . . . ,n, ~18!

Nn, j~t!5Nn, j~0!1tnn j~u,z!, n, j P” V.

In the maximal power problems the optimal periodt* is
determined as a solution of the following problem:

r ~t!5
An* ~t!

t
→max

t.0
.

For the differentiable and convex dependence of the p
duced work on the duration of the process, the optima
conditions for this problem yield the following equation fo
t* :

S dAd*

dt D
t*

5
Ad* ~t* !

t*
. ~19!

If there are no conditions like Eq.~6! in the problem (M
50), then the solutionW* (t) is to be found from the con
dition

(
n51

n

Tn~t!sn~u,z!1(
n, j

mn j~t!nn j~u,z!→ min
uPDu ,zPDz

~20!

jointly with Eqs.~18!. This solution does not depend on tim
for any form of process’ kinetics that determinesn andnn j .

If the function L in Eq. ~17! is concave onW for all l,
then there is only one basic solution: if the setDw5DuDz
can be divided intoM0 subsets@M0,(M11)#, andL is a
concave function on each of these subsets, then the num
of basic solutions is not more thanM0. The proof of this
statement follows from Eq.~17!.

The fractions of the timeg l are to be found from condi
tions ~16!, which take the following form after substitutio
of the basic solutions

(
l

g lsn~Wl !5sn , n51,2, . . . ,x,

(
l

g lnn j~Wl !5nn j , ~ j ,n!PV, ~21!

g l>0, (
l

g l51.

As the result of the derivations described above, we f
mulate the following statement~the theorem of the maxima
work!: If a thermodynamic system consists of a number
reservoirs and a number of working bodies then the maxi
work that can be produced by this system during the pe
of time t ~if internal energy of the system decreases! or the
o-
y

ber

r-

f
al
d

minimal work that has to be spent~if its internal energy
increases! is achieved in a process when the vector of inte
sive variables and contact functions are piecewise-cons
functions of time on the interval (0,t) and the number of
values this vector function takes is not more than (M11).
HereM is the number of fixed values of entropy and mass
the working bodies at timet5t. At the beginning and at the
end of this process the intensive variables of the work
bodies instantaneously change to some optimal values
the entropy of the system increases over the interval (0,t) as
a piecewise-linear function.

Conclusion:If there are no constraints on the compositi
and on the entropy of the working bodies at timet5t (M
50) then, in a maximal work process, the system’s entro
increases with a constant rate for any law of heat and m
transfer, and each one of the working bodies stays in con
with only one reservoir during a limiting work process.

The maximal work problem for a system which contai
passive subsystems turns out to be an optimal control p
lem with discrete control variablesU(t). It can be solved
analytically only in a very few cases.

It is clear that the problem of minimal used workAi* ,
coincides with the formulation of the maximal work,Ad* .
The only difference is the sign of the derived solution. If t
work on the optimal solutionAd* is positive, thenAi* 5Ad*
1Am

0 , if it is negative, thenuAd* u1Am
0 5Ai* . HereAm

0 is the
work in irreversible equilibrium processes.

III. MAXIMAL WORK PROBLEM
IN THERMOMECHANICAL SYSTEMS

In a thermomechanical system temperature is an inten
variable, and extensive variables are volume, entropy,
internal energy. From the maximal work theorem, which w
formulated in Sec. II, it follows that a maximal work proce
consists of isothermal and adiabatic branches. It includes
more thanM11 isothermal branches and not more thanM
12 adiabatic temperature jumps. Two of these tempera
jumps occur at the beginning and end of the process.

The rate of entropy change in a thermomechanical sys
is

Ṡn5sn~u,T!5
1

Tn
(
i 51

n

Uinqin~Ti ,Tn!. ~22!

For reservoirs the entropy, volume, and internal energy
related to each other via the equation

E05T0S02P0V0 .

It is easy to show that if a system consists of a reservoir
n21 subsystems, then the work can be rewritten as the
lowing function of the entropy production:

A5 (
n51

n21

~T0DSn2DEn!2T0(
n51

n

sn~u,T!. ~23!

The last term includes the average rate of change of
reservoir’s entropy. Thus, for the given initial and final sta
of the subsystems, the maximal produced work~minimal
spent work! corresponds to the minimal entropy productio
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in the system. Therefore, in a system with reservoirs,
optimal processes turn out to be the minimal dissipation p
cesses@9#. Let us consider what are the specific forms f
these optimality conditions in some important particu
cases of thermomechanical systems.

A. Independent subsystems that contact with a reservoir

Let us consider the system shown in Fig. 2. It consists
n subsystems that are insulated from each other and
contact with the reservoir. The temperature of the reservo
T0 and its pressure isP0. We assume that the initial states
all subsystems and the parameters of the reservoir are g
and the total volume of the system is constant.

Each one of the heat fluxesqn(T0 ,Tn) and the entropy
productionsn(Tn)5(1/Tn)qn(T0 ,Tn) depend on one contro
Tn . Because this flux can be switched off by settingTn

5T0, there is no need to use contact functionsUn here.
The maximal work problem in this system can be deco

posed inton subproblems about the optimal contact with
reservoir for each of the subsystems. From conditions~15!
here, it follows that the pressure in each of these subsyst
at t5t is P0. The maximal power problem requires takin
into account characteristics of all subsystems.

First we consider the maximal work problem for the o
timal contact between the reservoir and the working body
this section we will now omit the subscriptn. If the entropy
of the working bodyS(t) at the end of the process is give
and the volumeV* is determined by the conditionP5P0,
then the internal energy of the working bodyE(t) is fixed
and the minimum of the system’s internal energy cor
sponds to the minimum ofE0. Thus we arrive at the follow-
ing formulation:

q~T0 ,T!→max
T
Y S q~T0 ,T!

T D5
DS

t
. ~24!

For the linear law of heat transfer,

q~T0 ,T!5a~T0 ,T!, ~25!

this subproblem was investigated in Ref.@2#, and for a more
general law

q~T0 ,T!5a~T0
k2Tk!, ~26!

wherea andk both have the same sign, it was considered
Refs.@4–6#.

For the linear law of heat transfer, problem~24! is a con-
vex one, and it has a unique solution

FIG. 2. The structure of a thermodynamic system which cons
of insulated subsystems and reservoirs.
e
-

r
r

f
at
is

en

-

ms

n

-

n

T* 5
T0

11DS/at
, at1DS.0.

The optimal work is

A* ~t!5
TnDSat

at1DS
2DE. ~27!

HereDE5E„S(t),V* (t)…2E„S(0),V(0)….
Assume that we computeAd* (t) using formula~27!. If it

is positive then it corresponds to the maximal produced w
An* (t). If it is negative then it corresponds to the minim
spent workAi* (t)5uA* (t)u.

In order to make dependence~27! more specific, we will
assume that each of the subsystems is close to the idea
Then

DS5Cpln
T~t!

T~0!
2R ln

P0

P~0!
. ~28!

Here we took into account the condition that att5t the
pressures in subsystems are equal to the reservoir’s pres

Equation~28! can be used to expressT(t) in terms ofDS
andDE5Cn@T(t)2T(0)#:

DE~DS!5CnT~0!F S P0

P~0! D
R/Cp

expS DS

Cp
D21G . ~29!

The substitution of Eq.~29! into Eq. ~27! yields the depen-
denceA* (t,DS). The characteristic forms of the depende
cies of the maximal work and minimal work ont are shown
in Fig. 3.

If the value of DE, which is calculated using formula
~29!, is positive, then such a value oft0 exists that no work
can be produced by the system in any process with a sho
duration thant0. If the entropyS(t) is not fixed then, in-
stead of problem~24!, we obtain the problem of minimiza
tion of the system’s internal energy. According to Eq.~20! it
has the form

ts

FIG. 3. The characteristic dependencies of the limiting sp
work and limiting produced work on the contact durationt. ~a!
corresponds to the positive increment of the system’s entropy,~b! to
the negative increment, and~c! to DE.T0DS.
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312 PRE 62ANATOLY M. TSIRLIN AND VLADIMIR KAZAKOV
S T~t!

T
21Dq~T0 ,T!→min

T.0
~30!

subject to

DS5S~t!2S~0!5t
q~T0 ,T* !

T*
.

After taking Eq.~28! into account for the ideal gas and th
linear law of heat transfer, the last equation can be rewri
as

Cp ln
T~t!

T~0!
2R ln

P0

P~0!
5taS T0

T
21D . ~31!

According to Eq.~30!, for q5a(T02T), we obtain

T~t!

T
5

T

T0
⇒T~t!5

T2

T0
. ~32!

Its substitution into Eq.~31! yields the following equation
for T* :

2Cp ln
T*

T0T~0!
2R ln

P0

P~0!
5taS T0

T*
21D . ~33!

Because the right-hand side of this equation is a strictly
creasing function ofT* , and the left-hand side is a strictl
decreasing one, this equation has a unique solution w
determines the limiting work:

Ad* ~t!52DEmin5CnS T~0!2
~T* !2

T0
D1at~T02T* !.

~34!

One can easily demonstrate that during a contact betw
a reservoir and a passive subsystem, whose temperatur
function of its internal energy, the work produced in t
system is equal to 0 for any contact functionU(t).

In the maximal power problem

n~t!5

(
i

Ai~t!

t
→max

t.0
,

the optimality condition for the convex functionsn(t), that
is, for such functionsAi(t) that obey the inequality

(
i

S d2Ai

dt2
t222Ai~t!D ,2t(

i

dAi~t!

dt
,

takes the form

(
i

S dAi

dt
2

Ai~t!

t D50.

After taking into account Eqs.~29! and ~30! for the above-
described heat transfer laws and working body characte
tics, we obtain the following equation for the duration
maximal power process,t* :
n

-

ch

en
is a

s-

(
i 51

n
a iDSi

a it1DSi
S DSi

a it1DSi
21D5

T0

t (
i 51

n

DEi~DSi !.

The power that can be derived in a finite-time process
limited, but the power used in it can be infinitely large.

For a heat flux that has the form of Eq.~25!, for 0,k
,1 and forDSi,0 the regime with the minimal workTi* (t)
can be a switching regime when the temperature switc
between two basic values. One of these basic values co
sponds to the maximal feasible temperature of the work
body @5#. But this change of the solutionT* (t) does not
change the dependence ofAi* (t) on t.

B. Subsystems that contact with a reservoir and
with each other

First we consider the system that is shown in Fig. 4. F
simplicity we assume that the volumes of the subsystem
t5t are fixed, and thatSi(t) are also fixed. The minimiza
tion of system’s internal energy att5t leads to conditions
~17!,

L5H (
i 51

2 FUiqi~T0 ,Ti !

1l i S Uiqi~T0 ,Ti !1U21q21~T2 ,T1!~21! i

Ti
2DSi D G

→max
U,T

J →min
l

,

whereDSi5Si(t)2Si(0).
The limiting work in the system, which is shown in Fig. 4

is never lower than the limiting work in the system, which
shown in Fig. 2, because forU15U251, andU2150 these
systems are identical.

Since the limiting workAd* is a strictly decreasing func
tion of DSi andl i52]Ad* /]DSi , the multipliersl i are al-
ways positive. For the linear heat transfer laws

qi5a i~T02Ti !, q215a21~T22T1!,

the functionL is convex onT1 andT2, and the problem has
only one basic value ofT vector. The contact functionUi*
51 if qi(T0 ,Ti)@11(l i /Ti)#.0, that is, if T0.Ti . Be-
cause of this, the optimal values ofT1 andT2 are determined
as

FIG. 4. Subsystems that contact with a reservoir and with e
other.
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Ti* 5
a iT02q̃21~21! i

a i1DSi
, i 51,2.

Here q̃215U21q21(T2 ,T1). The produced work is

Ad5t„q1~T0 ,T1* !1q2~T0 ,T2* !…

5tH T0Fa11a22
a1

a11DS1
2

a2

a21DS2
G

1U21a21~T22T1!S a2

a21DS2
2

a1

a11DS1
D J .

~35!

One can easily show that for any sign ofq21 the multiplier in
front of U21 in Eq. ~35! is positive. Therefore,U21* 51. The
temperaturesT1* andT2* are constant over the interval (0,t)
and are to be found from the following systems:

a1 /T1
2
„T1

22T1~t!T0…5a21S T2T1~t!

T1
2

2
T2~t!

T2
D ,

~36!

a2 /T2
2
„T2

22T2~t!T0…5a21S T1T2~t!

T2
2

2
T1~t!

T1
D .

For subsystems that are close to the ideal gases and
Vi(t).Vi0 the following equation should be added to co
ditions ~36!:

DSi5Cv i ln
Ti~t!

Ti~0!

5
1

Ti
„a i~Tn2Ti !2a12~21! i~T22T1!…, i 51,2.

~37!

This determinesTi* andTi* (t).
The maximal workAd* and the minimal workAi* are

determined as the sum of the increments of the subsyste
and reservoir’s internal energies:

A* 5U@E0~0!2E0~t!#

1(
i

@Ei~0!2Ei~t!#U
T5T* ,T(t)5T* (t)

.

If there is no reservoir in the system, thenU15U250. From
Eq. ~36! it follows that

T1

T2
5AT1~t!

T2~t!
5v. ~38!

Condition ~37! can be rewritten as

Cv1ln
T1~t!

T10
5

a21

T1
~T22T1!5a21S 1

v
21D ,
for

s’

Cv2ln
T2~t!

T20
52

a21

T2
~T22T1!5a21~v21!. ~39!

Conditions~38! and~39! determineT1* (t), T2* (t), andv* .
Because the temperatureT1* andT2* are not defined uniquely
here, some additional condition could be imposed on
system that should defineT1* and T2* . This could be, for

example, the condition that the average rate of heat fluxq̄ is
fixed. In this case,

T1* 5
q̄v*

a21~12v* !
, T2* 5

q̄

a21~12v* !
.

IV. MASS TRANSFER PROCESSES

Let us consider a class of systems which are described
only by their temperatures, volumes, and pressures, but
by their chemical composition. The chemical compositi
for thenth subsystem is determined by the vector of conc
trations Cn5(Ci1 , . . . ,Cik) or by the vector of chemica
potentialsmn(Ti ,Pi ,Ci)5(m i1 , . . . ,m ik).

Assume that the chemical potentials of the subsystemsmn

and the contact functionsUn j are the problem’s control vari
ables. The problem of minimal work, that must be done
transfer the system from a given initial state to a given fi
state, turns out to be identical to the minimal work proble
for the thermomechanical system where the subsyste
temperatures are the control variables. Its solution give
lower bound to the limiting work in the system. For an
physically meaningful mass transfer lawgin , this limiting
work regime consists of three branches: an instantane
jump of the chemical potentials’ vectorm from m(0) to
some optimal levelm* ; a ‘‘holding’’ of this vector on this
level at the interval (0,t); and a jump att5t to some value
m* (t). The valuesm* and m* (t) are determined by the
constrained problem, and by the equations of state of
subsystems, which relay the internal energy, the entropy,
the chemical potential att5t. Here the entropyS(t) de-
pends onS(0) andm* .

But this estimate could be relatively inaccurate~although
it is more accurate than a reversible estimate!. This is pos-
sible because in thermomechanical systems the optimal
systems’ temperature profilesT* (t) can be easily converted
into the optimal volumes’ profilesV* (t) ~which are the ac-
tual controls in the problem! using their equations of state
The situation is quite different for the chemical potentia
Here the changes of volume or pressure in each of the
systems influence the chemical potentials of all the com
nents that are present in this subsystem. Therefore, in
general case it is not possible to find such a functionV* (t)
which corresponds to optimal time profiles of the chemi
potentials for a number of components. For systems that
close to ideal gases, the chemical potential of thei th com-
ponent is@1#

m i~T,P!5m i0~T!1RT ln Pi , i 51, . . . ,k,

wherePi is the partial pressure of thei th component. Let us
now denote the volume of the subsystem asV, and assume
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that at any instance of time the volume and the pressure
always related to each other via the Boyle-Marriott equat

PV5NRT,

whereN is the number of moles in the subsystem, and

Pi5PCi5P
Ni

N
, i 51, . . . ,k.

Let us expressm i in terms ofV:

m i~T,V!5m i1~T!1RT ln
Ni

V
, i 51, . . . ,k. ~40!

Herem i1(T)5m i0(T)1RT ln RT.
For thenth subsystem,

Ṅn i5(
j

gi j n~mn ,m j !U j n , n51, . . . ,n, i 51, . . . ,k,

~41!

Ṡn5
1

T (
j 51

n

(
i 51

k

U j nm ingj n i~mn ,m j !. ~42!

Since the right-hand side of Eq.~41! andmn do not depend
on the number of molesNn , Eqs. ~41! are not Lyapunov
equations, and the problem of finding the functionsVn(t)
that maximize the work produced~or that minimize the work
expended! is a general type of optimal control problem. He
for simplicity we assume that this is an isothermal ma
transfer process, that all the temperatures are equal toT, and
that there is no heat exchange in the system.

A. Mass transfer with a reservoir

Assume that a system consists of a reservoir with te
peratureT, pressureP0, and chemical potentialm0, and a
working body with the same temperature, volumeV.0, and
chemical potentialm. The initial states of the working body’
variablesE0 , S0 , N0, and V0 are given. For simplicity we
assume that the number of components isk51. The working
body’s variables relay to each other via an equation of s

E05E~S0 ,N0 ,V0!.

S(t) is given. The combined volume of the reservoir and
working body is constant.

In the maximal work problem it is required to minimiz
the system’s internal energy att5t:

A5DE5@E~0!2E~t!1E0~0!2E0~t!#→max. ~43!

HereE0 andE are the internal energies of the reservoir a
the working body, correspondingly. The maximization is c
ried out onV(t) and onm(t) over the interval (0,t). The
conditions of maximum onV(t) yields that, att5t, the
pressure in the working body must be equal to the pressu
the reservoir. From the condition

@DE01E„S~t!,N~t!,V* ~t!…#→min, ~44!

where
re
n

s

-

te

e

-

in

DE05E
0

t

~h01m0!g~m0 ,m!dt,

E
0

t

m~ t !g~m0 ,m!dt5TDS, ~45!

and in accordance with Eq.~17!, we find for the basic values
of m by solving the auxiliary problem

LH g~m0 ,m!„l1~h01m0!2lm~t!…1l
DST

t J→min
m

max
l

.

~46!

After finding one or two basic values ofm* from Eq. ~46!,
N* (t) is to be calculated, and thenm(t) is found from the
condition

S„m~t!,N* ~t!,V* ~t!…5S~t!. ~47!

If the Lagrange functionL is concave onm—that is, if

d2g

dm2
.2l

dg

dm

—then the problem has a unique solution. One can show
in this probleml.0 anddg/dm,0 always. Thus for the
majority of the dependencies ofg(m), the condition of con-
cavity of L holds, andm* is determined by the equations

mg~m0 ,m!5
@S~t!2S~0!#T

t
,

N* ~t!5N01g~m0 ,m* !,

DE05~h01m0!g~m0 ,m* !t.

The substitution of these expressions into Eq.~43! yieldsA* .

B. Cycle with two reservoirs

Consider a system with two reservoirs and a worki
body that can contact with each reservoir~Fig. 5!. The
chemical potential of the key component ism1 in one reser-
voir, and ism2 in another~for definiteness,m1.m2).

FIG. 5. The schema of a diffusion-mechanical cycle.
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Because this is a cyclic process, the increments of
entropy, the internal energy, and the key component’s m
in the working body during the cycle are equal to zero. T
temperatures of all subsystems are the same.

The change of the system’s internal energy is equal to
change of the sum of reservoirs’ internal energies. We den
the reservoirs’ chemical potential asm0, and the working
body’s chemical potential asm. m0 can take two valuesm1

andm2 . The work

A5E0~0!2E0~t!5E
0

t

h~m0!g~m0 ,m!dt→max
m0 ,m

~48!

is subject to constraints on the changes of the work
body’s entropy and mass:

DS5
1

TE0

t

g~m0 ,m!„h~m0!2m…dt50, ~49!

DN5E
0

t

g~m0 ,m!dt50. ~50!

From Eq. ~49! it follows that the maximum of the work
corresponds to the maximum

A5E
0

t

g~m0 ,m!dt→max ~51!

subject to condition~50!.
In order to find the basic valuesm and m0 in problems

~50! and ~51!, we will write the Lagrange function and fin
its maximum onm0, andm and its minimum onl:

L5$g~m0 ,m!~m2l!→max
m0 ,m

%→min
l

.

The number of basic solutions is two; one basic solut
corresponds tom05m1 , and the other one tom05m2 . For
L, which is a strictly convex function ofm, the basic values
m obey the conditions

]L

]m
5

]g

]m
~m2l!1g~m0 ,m!50

or

g~m0 ,m!

m2l
52

]g

]m
.

Let us denote the root of this equation form05m2 as m1,
and that form05m1 asm2. BecauseL attains its maximum
in both basic solutions,

L~m1 ,m1 ,l!5L~m2 ,m2 ,l!. ~52!

This equation determines the value ofl.
Let us derive the particular form of these dependenc

for

g~m0 ,m!5a~m0!~m02m!. ~53!

From condition~52!, we obtain
e
ss
e

e
te

g

n

s

m5
m01l

2
. ~54!

Substitutions ofm1 andm2 into functionL yields the depen-
dence ofL for each of the basic solutions

L15L~m1 ,m1!5
a1

4
~m12l!2,

L25L~m2 ,m2!5
a2

4
~m22l!2.

The minimum onl for the maximum ofL on m0 andm is
attained in~see Fig. 6!.

L1~l!5L2~l!⇒l* 5
Aa1m11Aa2m2

Aa11Aa2

. ~55!

The fractions of time when contacts with reservoirs are
tablished are determined by condition~50!, and are

g15
a2Aa1

a2Aa11a1Aa2

,

g25
a1Aa2

a2Aa11a1Aa2

.

The limiting work obtained duringt is

A* ~t!5t@g1m1a1~m12m1!1g2m2a2~m12m2!#,

where m1 and m2 are determined by Eq.~55!, wherel is
substituted from Eq.~56!.

V. CONCLUSION

The solution of the problem of finding the maximal wo
that can be produced in a thermodynamic system with
restrictions on the process duration does not depend on
equations of state and on the fluxes’ kinetics in the syst
This limiting work regime is achieved in a reversible proce
of equalization of the subsystem’s intensive variables. T
maximal work here is equal to the difference between
combined internal energy of the system in an initial state a
in a limiting equilibrium state. In the inverse problem o
minimal work that must be expended in order to transfo

FIG. 6. The characteristic dependencies ofL1 andL2 on l.
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the system from an equilibrium state to a given final sta
this minimal work exceeds the corresponding maximal w
by the term that compensates for the irreversibility genera
by equilibrium processes similar to mixing processes.

If these limiting work problems contain restrictions on t
duration of the process, then they become optimal con
problems. These optimal control problems have a numbe
mathematical features that make the structure of finite-t
limiting work regimes independent of the equations of t
subsystem’s state and on the processes’ kinetics in m
practically important cases. Here the controlled intens
variables are piecewise-constant functions of time, and
extensive variables and the system entropy are piecew
linear functions of time. Note that the minimal work of sep
ration of a system in equilibrium into a number of su
systems depends uniquely on the maximal work in the di
process and on the reversible work of separation.

The limiting ~maximal or minimal! work corresponds to
the minimum of the combined internal energy of the syst
at the end of the process, subject to the constraints impo
on its initial and/or final states. For realistic equations
ol

d

d

,
k
d

ol
of
e

ny
e
e
e-

-

ct

ed
f

state the internal energy of each subsystem is a monot
cally decreasing function of its entropy. Because this dep
dence is not linear, the minimization of the combined int
nal energy of the system is not equivalent to t
minimization of its total entropy. However, in many partic
lar cases the problem’s constraints allow us to reduce
limiting work problem to the minimization of the interna
energy of one of its subsystems, and thus to the minimiza
of its entropy increment. For example, this is the case if
final state of every subsystem except one is given. A sim
problem was considered above@see Eq.~23!#.

The maximal power problem has the same solution str
ture as the maximal work problem, but differs from the lat
because the duration of the processt is not fixed but is
chosen to maximize the ratioAd* (t)/t.

ACKNOWLEDGMENT

This work was directly supported by a grant from th
Russian Fund for Fundamental Research~Grant No. 99-01-
00295!.
nd
e

@1# A.A. Guhman, Foundations of Thermodynamics~Science,
Moscow, 1979! ~in Russian!.

@2# L.I. Rozonoer and A.M. Tsirlin, Automation Remote Contr
1, 70 ~1983!; 1, 88 ~1983!; 1, 49 ~1983!.

@3# A.M. Tsirlin, Dokl. Akad. Nauk 323, 1 ~1991! @Sov. Phys.
Dokl. 37, 3 ~1992!#; 323, 271 ~1991! @ 37, 117 ~1992!#.

@4# P. Salamon and A. Nitzan, J. Chem. Phys.20, 1 ~1981!; 20, 51
~1981!.

@5# S.A. Amelkin, B. Andressen, P. Salamon, A.M. Tsirlin, an
V.N. Umagugina, Izv. Russ. Akad. Nauk Energetics2, 118
~1998!.

@6# S.A. Amelkin, B. Andressen, P. Salamon, A.M. Tsirlin, an
V.N. Umagugina, Izv. Russ. Akad. Nauk Energetics1, 152
~1999!.
@7# V.N. Orlov, A.V. Rudenko, Automation Remote Control5, 27

~1985!.
@8# B. Andresen, Finite-Time Thermodynamics~University of

Copenhagen Press, Copenhagen, 1983!.
@9# R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, a

A. M. Tsirlin, Thermodynamic Optimization of Finite-Tim
Processes~Wiley, Chichester, 1999!.

@10# A.M. Tsirlin, V.A. Mironova, S.A. Amelkin, and V. Kazakov,
Phys. Rev. E3, 58 ~1998!; 3, 1 ~1998!; 3, 215 ~1998!.

@11# M.H. Rubin, Phys. Rev.19, 3 ~1979!; 19, 1272 ~1979!; 19,
1277 ~1979!.


